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Neurons Saving Neurons: Development of a Machine Learning Model for Prediction of Ischemic Stroke using Non-
Contrast Enhanced Computed Tomography (NCCT) Imaging 

By Josh Lazar 

1. Abstract 
Determining whether a patient presenting with stroke symptoms is experiencing an ischemic event is a very difficult 
problem with large implications. Deciding whether or not to treat a suspected stroke patient must be performed quickly in 
order to maximize the potential for saving brain tissue, so using what little data is available to its maximum potential is of 
paramount importance. Using the most common data collected on a suspected stroke patient, non-contrast enhanced 
computed tomography (NCCT) images, a single-layer feedforward neural network (FNN) was developed to provide an 
informed decision to a caregiver whether a patient is experiencing an ischemic stroke. The model achieved a 78.0% 
accuracy on the test set with 77.4% sensitivity and 78.4% specificity. 
 

2. Introduction 
In 2021, stroke and other cerebrovascular diseases were the fifth leading cause of death in the United States (162,890 
deaths), behind heart disease (695,547), cancer (605,213), COVID-19 (416,893), and accidents (224,935)1. A stroke can 
occur either through the blockage of a blood vessel in the brain via a clot, which is known as an ischemic stroke, or 
through the rupture of an aneurysm, which is known as a hemorrhagic stroke. Globally, ischemic strokes account for 87% 
of all strokes2. The focus of this paper will be on ischemic stroke. 
 

There is a life-saving thrombolytic drug for treating ischemic stroke patients called intravenous tissue plasminogen 
activator (IV-tPA), but this drug must be administered within 4.5 hours of symptom onset in order to be considered safe 
and effective3. However, patients suspected of having a stroke are not immediately given this drug because the symptoms 
of ischemic and hemorrhagic stroke are very similar, and administering IV-tPA to a hemorrhagic stroke patient can be fatal 
as it thins the blood. Therefore, patients suspected of having a stroke are normally put through a head computed 
tomography (CT) scan. Hemorrhage is very obvious from a CT scan (see images below), so typically if this is not observed 
and the patient is within the IV-tPA window, they will immediately be administered the drug. However, if a bleed is not 
observed and they are outside the window, the situation becomes difficult as it is difficult to identify an ischemic stroke 
from CT images. Typically, this means further studies including magnetic resonance imaging (MRI) or contrast-enhanced 
CT imaging before intervention through mechanical thrombectomy (removal of blood clot causing blockage), which can 
take time and mean the death of millions of brain cells in the meantime. 
 

 

Figure 1: CT Scan Images of Hemorrhagic (left) and Ischemic (right) Stroke Patients4 

Therefore, the goal of this project is to use the images initially gathered on suspected stroke patients to make an informed 
decision as to whether or not to intervene. A CT scan provides a 3D representation of brain tissue by taking individual 
slices at a specified thickness. For head and neck CT scans, this thickness is recommended to be no more than 3mm but 
can vary depending on the X-ray machine manufacturer’s specifications and the settings selected5. This results in a set of 
images of fixed resolution (but variable number) that represent a single patient’s scan. These images are the input to the 
model, and the output of the model is a binary decision: whether or not an ischemic stroke has occurred. 
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3. Related Work 
The state-of-the-art for NCCT image analysis is provided by a company called Rapid AI, who offer a broad suite of 
products for stroke, aneurysms, pulmonary embolism, and other applications. Their Rapid NCCT Stroke application is an 
FDA-approved AI-based medical device that determines suspicion of intracranial hemorrhage (ICH) and large-vessel 
occlusion (LVO) based on NCCT imaging. They claim to be the first to give integrated suspicion output based on multiple 
stroke-related indicators. They also claim to have demonstrated a 55% increase in sensitivity when compared to the 
intuition of general radiologists6. According to their 510(k) summary published on the FDA website, this translates to a 
sensitivity of 0.635 (95% CI: 0.544 - 0.717) and specificity of 0.951 (95% CI: 0.891 – 0.979). Subgroup analyses were also 
performed, which did not show significant differences in sensitivity or specificity across patient gender, age, slice 
thickness, or X-ray machine manufacturer7. The only details provided about their implementation is that the technology 
used is “AI/ML/Neural Network.” 
There have also been attempts in academia to develop similar prediction algorithms: 

1. Shinohara et. al developed a deep convolutional neural network for classifying NCCT images as hyperdense 
middle cerebral artery positive or negative and achieved an 82.9% sensitivity and 89.7% specificity8. 

2. Lisowska et. al proposed a 3D convolutional neural network designed to exploit contralateral features and 
anatomical atlas information and achieved a ROC AUC of 0.996 and a Precision-Recall AUC of 0.563 in a 
voxel-level evaluation, which was deemed not at a level for routine clinical use9. 

3. Abedi et. al developed an artificial neural network to recognize acute cerebral ischemia and differentiate 
stroke mimics in an emergency setting and achieved an average sensitivity of 80.0% and specificity of 86.2% 
in a 10-fold cross-validation analysis. This study utilized diffusion-weighted imaging and apparent diffusion 
coefficient data, which are outputs of MRI10. 

4. The Ischemic Stroke Lesion Segmentation (ISLES) challenge in 2015 pitted 21 research teams against each 
other to develop an algorithm for ischemic stroke lesion segmentation from multi-spectral MRI images. The 
top ranking teams used convolutional neural networks, as noted by Litjens et al11,12. 
 

4. Dataset and Features 
A publicly available dataset was pulled from Kaggle that contains categorized images of brain CT scans13. The images are 
labeled with the patient number followed by the slice number, meaning that it is known which set of images belong to a 
single patient. However, upon inspection of the training dataset, not every slice from the scan is always included and the 
slice numbers usually increase sequentially from inferior to superior, but this is not always the case. The following table 
shows the number of images and patients in each set and class in the pre-divided data. 
 

Set Class 
Number of 

Images 
Number of 
Examples 

% of Total 
(Images) 

% of Total 
(Examples) 

Train 
Normal 1087 51 

73.3% 35.2% 
Stroke 756 31 

Dev 
Normal 157 43 

9.3% 29.6% 
Stroke 78 26 

Test 
Normal 307 51 

17.4% 35.2% 
Stroke 130 31 

Total 
Normal 1551 145 

100% 100% Stroke 964 88 
All 2515 233 

 

Each image is a square 650-pixel x 650-pixel black and white image, where each pixel has a value from 0 to 1. A few 
examples of slice images from the training set can be seen below, where the black border is the space that surrounds the 
patient, the bright white ring is the skull, and the gray in the middle of the ring is the brain tissue of interest. It was 
immediately apparent that it would be necessary to scale down the images, since the unscaled image contains 
650*650=422,500 pixels, resulting in 422,500 parameters for the model to handle. Thus, a hyperparameter was introduced 
called a “scaling factor,” which makes use of Scikit Image’s rescale function14 to size the image down and reduce the 
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number of parameters by the scaling factor squared. The table below the images shows the first example slice image with 
various scaling factors. 
 

    
 

SF 1 0.4 0.2 0.1 
Image 

    
Params 
(pixels) 

422,500 67,600 16,900 4,225 

 
The training and validation data sets were read in and the images were scaled and formed into a vector using 
numpy.ravel15, then this vector was loaded into a matrix. Label vectors were also assembled, where 0 corresponds to an 
image from a normal patient and 1 corresponds to an image from a stroke patient. Patient label and slice vectors were 
also assembled based on the file names. Then, taking advantage of the lateral symmetry of the brain, left-right mirrored 
images were added to the training set, effectively doubling the size of the training set. 
 

5. Methods 

 
The above graphical representation shows how the machine learning model was developed and tested. First, data pre-
processing as described in section 4 was performed. Then, the training data and labels were passed into a single layer 
feedforward neural network. Then, the probabilities from this prediction are fed to a patient predictor. 

The goal of a single layer feedforward neural network is to learn the parameters of the model, the weights and the biases. 
There is one less weight matrix and bias vector than there are layers in the neural network, as these help to translate from 
one layer to the next, so for a single hidden layer there are two weight matrices and two bias vectors. During forward 
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propagation, the input data is multiplied by the first weight matrix and the first biases are added, then the activation 
function is applied in order to produce non-linearity, producing the values of the hidden layer. Then, the values of the 
hidden layer are multiplied by the second weight matrix and the second biases are added. When the softmax function is 
applied, this produces a probability for each classification, the output layer. Cross entropy loss is calculated based on the 
training labels, then, in a process called backpropagation, the derivative of the loss with respect to each parameter is 
calculated, and gradient descent is used to adjust each of the parameters in the direction that will minimize loss. This is 
repeated over several epochs in order to continually improve the parameters to minimize the loss. 

This neural network was used to create an image prediction, and this probability was fed into a secondary classification 
predictor. This predictor sums the probabilities for each slice in a patient’s scan to determine which classification has the 
highest overall probability, then makes a binary decision based on these summed probabilities. 

The metrics selected for this model are accuracy, sensitivity, and specificity. Sensitivity and specificity are traditionally 
used in the medical field as these metrics are commonly used in drug trials. These metrics are based on the confusion 
matrix and can be written as: 
 

𝑆𝑒 =  
# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + # 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
       𝑆𝑝 =

# 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

# 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + # 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

The accuracy, sensitivity, and specificity of the model on the training data could then be calculated. The validation (dev) 
data could also be fed through the two predictors to obtain a dev accuracy, sensitivity, and specificity. The dev accuracy, 
sensitivity, and specificity were then used to select the model hyperparameters, and the final model was tested on the 
test set. 
 

6. Experiments/Results/Discussion 
Several initial experiments were conducted to determine the right ballpark for the hyperparameters. The scaling factor was 
fixed at 0.1 because it did not appear that a higher scaling factor yielded improved results and significantly increased 
computational cost. The number of epochs was also fixed at 800, although it was noted that some models did not appear 
to converge by this point. Then, a full factorial experiment was conducted with the remaining hyperparameters: the 
learning rate, the number of nodes in the hidden layer, and the regularization constant. 3 different learning rates, 2 
different numbers of hidden layer nodes, and 5 different regularization constants were selected for a total of 3*2*5=30 
different models. The results can be seen below. 

Inputs Outputs 
Learning 

Rate 
Hidden 

Layer Nodes 
Regularization 

Constant 
Training Dev 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Average 
0.10 

300 

0 

96.3% 80.6% 100.0% 62.3% 30.8% 81.4% 58.2% 
0.25 100.0% 100.0% 100.0% 73.9% 61.5% 81.4% 72.3% 
0.50 100.0% 100.0% 100.0% 68.1% 50.0% 79.1% 65.7% 
0.10 

600 
89.0% 41.9% 100.0% 66.7% 30.8% 88.4% 61.9% 

0.25 100.0% 100.0% 100.0% 72.5% 50.0% 86.0% 69.5% 
0.50 100.0% 100.0% 100.0% 72.5% 53.8% 83.7% 70.0% 
0.10 

300 

0.1 

81.1% 0.0% 100.0% 62.3% 0.0% 100.0% 54.1% 
0.25 81.1% 0.0% 100.0% 62.3% 0.0% 100.0% 54.1% 
0.50 81.1% 0.0% 100.0% 62.3% 0.0% 100.0% 54.1% 
0.10 

600 
81.1% 0.0% 100.0% 62.3% 0.0% 100.0% 54.1% 

0.25 68.9% 100.0% 61.7% 31.9% 76.9% 4.7% 37.8% 
0.50 68.9% 100.0% 61.7% 31.9% 76.9% 4.7% 37.8% 
0.10 

300 

0.01 

81.7% 3.2% 100.0% 63.8% 3.8% 100.0% 55.9% 
0.25 81.7% 3.2% 100.0% 63.8% 3.8% 100.0% 55.9% 
0.50 82.3% 6.5% 100.0% 65.2% 7.7% 100.0% 57.6% 
0.10 

600 
81.1% 0.0% 100.0% 63.8% 3.8% 100.0% 55.9% 

0.25 81.7% 3.2% 100.0% 63.8% 3.8% 100.0% 55.9% 
0.50 81.1% 0.0% 100.0% 62.3% 0.0% 100.0% 54.1% 
0.10 

300 

0.001 

90.9% 51.6% 100.0% 69.6% 30.8% 93.0% 64.5% 
0.25 94.5% 100.0% 93.2% 56.5% 69.2% 48.8% 58.2% 
0.50 73.8% 100.0% 67.7% 39.1% 76.9% 16.3% 44.1% 
0.10 

600 
100.0% 100.0% 100.0% 60.9% 42.3% 72.1% 58.4% 

0.25 76.2% 100.0% 70.7% 39.1% 73.1% 18.6% 43.6% 
0.50 100.0% 100.0% 100.0% 82.6% 69.2% 90.7% 80.8% 
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0.10 
300 

0.0001 

90.2% 48.4% 100.0% 66.7% 26.9% 90.7% 61.4% 
0.25 99.4% 100.0% 99.2% 73.9% 65.4% 79.1% 72.8% 
0.50 100.0% 100.0% 100.0% 73.9% 53.8% 86.0% 71.3% 
0.10 

600 
94.5% 100.0% 93.2% 53.6% 61.5% 48.8% 54.7% 

0.25 100.0% 100.0% 100.0% 76.8% 57.7% 88.4% 74.3% 
0.50 100.0% 100.0% 100.0% 82.6% 69.2% 90.7% 80.8% 

 
The model with the highest average dev 
accuracy/sensitivity/specificity was selected, with a 
learning rating of 0.50, 600 hidden layer nodes, and 0.001 
regularization constant (tied with 0.0001). The relatively 
high learning rate appears to make the accuracy jump up 
and down in earlier epochs, but this eventually stabilizes 
around 750 epochs. Interestingly, the training accuracy 
takes a large dive at around 600 epochs but then makes a 
recovery where the dev accuracy is also stable. There is 
likely significant overfitting in the model seeing that there 
is a large gap between the converged training and dev 
accuracies. The loss function performs as expected with 
a constant decrease over the number of epochs. 

This model was then tested on the test set and resulted 
in an accuracy of 78.0%, a sensitivity of 77.4%, and a 
specificity of 78.4%. 

7. Conclusion/Future Work 
A neural network was developed for classification of CT images into normal and stroke categories that achieved an 
accuracy of 78.0%, a sensitivity of 77.4%, and a specificity of 78.4% on the test set. While the sensitivity achieved is higher 
than the average benchmark of Rapid AI by over 10%, the specificity is significantly lower. Further model refinement is 
necessary before moving forward into clinical applications. 
 

In the future, given more time, resources, and expertise, there are a few improvements that I believe would strengthen this 
model. 
• First, improving the patient prediction model I believe would add value and help improve accuracy. Certain slices may 

be more important for prediction than others (e.g. those with more brain tissue), so I would like to explore this rather 
than summing all the probabilities. This task is made somewhat complicated by the fact that each scan contains a 
different number of images, and the images in the dataset are not consistently ordered. There would likely need to be 
some manual ordering before the dataset is ready for weighting or learning based on each specific slice in the scan. 

• Secondly, I think that further supplementing the training set with images that are slightly rotated could help the model 
learn better. This could add a large number of training examples and thus likely improve the model accuracy. 

• I also think that there is room for improvement in the explainability of the model. Currently, the model only outputs a 1 
or a 0 based on the scan images. However, there is value in pointing to which specific image(s) in the scan contributed 
most to this conclusion and which superpixels within the image(s) contributed. This would identify specific regions of 
the brain that are undergoing an ischemic event and could provide caregivers with more information that would allow 
them to determine whether or not treatment is necessary. 

• Finally, I think that gathering more data would be helpful, including more scans as well as more features including the 
patient’s gender, age, and the time from symptom onset when the scan was taken. Because the early signs of 
ischemia are very faint, if the model had the time from symptom onset to when the scan was taken, it could learn to 
look for more subtle features in those where this measure is less. 
 

8. Appendices - N/A for Applications project 
 

9. Contributions 
This project was performed solely by Josh Lazar, Master’s Student in Mechanical Engineering at Stanford University. 
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